-
How Does Noise Help Robustness? Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh
In CVPR 2020(Oral)
-
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning
Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, Cho-Jui Hsieh
In NeurIPS 2019
-
Robustness Verification of Tree-based Models
Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, Cho-Jui Hsieh
In NeurIPS 2019
-
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh
In KDD 2019 (Oral)
-
Area Attention
Yang Li, Lukasz Kaiser, Samy Bengio, Si Si
In ICML 2019
-
GaterNet: Dynamic Filter Selection in Convolutional Neural Network via a Dedicated Global Gating Network
Zhourong Chen, Yang Li, Samy Bengio, Si Si
In CVPR 2019
-
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Network
Patrick H. Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh
In ICLR 2019
-
GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking
Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh
In NIPS 2018
-
GPU-acceleration for Large-scale Tree Boosting
Huan Zhang, Si Si, Cho-Jui Hsieh
In SysML 2018
-
Nonlinear Online Learning with Adaptive Nystrom Approximation
Si Si, Sanjiv Kumar, Yang Li
In arXiv:1802.07887
-
Gradient Boosted Decision Trees for High Dimensional Sparse Output
Si Si, Huan Zhang, Sathiya Keerthi, Dhruv Mahajan, Inderjit Dhillon, Cho-Jui Hsieh
In ICML 2017
-
Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines
Cho-Jui Hsieh, Si Si, Inderjit Dhillon
In KDD 2017 (Oral)
-
Memory efficient kernel approximation
Si Si, Cho-Jui Hsieh, Inderjit Dhillon
JMLR 2017
-
Goal-directed inductive matrix completion
Si Si, Cho-Jui Hsieh, Inderjit Dhillon
In KDD 2016 (Oral)
-
Computationally Efficient Nystrom Approximation using Fast Transforms
Si Si, Cho-Jui Hsieh, Inderjit Dhillon
In ICML 2016
-
Kernel Ridge Regression via Partitioning
Rashish Tandon, Si Si, Pradeep Ravikumar, Inderjit Dhillon
In arXiv:1608.01976
-
Fast prediction for large-scale kernel machines
Cho-Jui Hsieh, Si Si, Inderjit Dhillon
In NIPS 2014
-
Multi-scale spectral decomposition of massive graphs
Si Si, Donghyuk Shin, Inderjit S Dhillon, Beresford N Parlett
In NIPS 2014
-
Parallel matrix factorization for recommender systems
Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, Inderjit S Dhillon
Knowledge and Information Systems 2014
-
A Divide-and-Conquer Solver for Kernel Support Vector Machines
Cho-Jui Hsieh, Si Si, Inderjit Dhillon
In ICML 2014
-
Memory Efficient Kernel Approximation
Si Si, Cho-Jui Hsieh, Inderjit Dhillon
In ICML 2014
-
Beyond modeling private actions: predicting social shares
Si Si, Atish Das Sarma, Elizabeth F Churchill, Neel Sundaresan
In WWW 2014 (short paper)
-
The expression gap: do you like what you share?
Atish Das Sarma, Si Si, Elizabeth F Churchill, Neel Sundaresan
In WWW 2014 (short paper)
-
Multi-scale link prediction
Donghyuk Shin, Si Si, Inderjit S Dhillon
In CIKM 2012
-
Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, I Dhillon
In ICDM 2012 (best paper)
-
Distribution calibration in Riemannian symmetric space
Si Si, Wei Liu, Dacheng Tao, Kwok-Ping Chan
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 2011
-
Evolutionary cross-domain discriminative Hessian eigenmaps
Si Si, Dacheng Tao, Kwok-Ping Chan
IEEE Transactions on Image Processing 2010
-
Bregman divergence-based regularization for transfer subspace learning
Si Si, Dacheng Tao, Bo Geng
IEEE Transactions on Knowledge and Data Engineering 2010
-
Discriminative Hessian Eigenmaps for face recognition
Si Si, Dacheng Tao, Kwok-Ping Chan
In ICASSP 2010
Details
BibTeX
PDF
Code